Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots

نویسندگان

  • Tonni Grube Andersen
  • Barbara Ann Halkier
چکیده

We recently described the glucosinolate transporters GTR1 and GTR2 as actively contributing to the establishment of tissue-specific distribution of the defense compounds glucosinolates in vegetative Arabidopsis plants. Upon bolting and thereby development of the inflorescence and initiation of seed setting, the spatial distribution of glucosinolates does undergo major changes. Here we investigate the role of GTR1 and GTR2 in establishment of glucosinolate source-sink relationships in bolting plants. By in vivo feeding the exogenous p-hydroxybenzylglucosinolate to a rosette leaf or the roots of wildtype and a gtr1 gtr2 mutant, we show that this glucosinolate can specifically translocate from the rosette and the roots to the inflorescence in a GTR1- and GTR2-dependent manner. This marks that, upon bolting, the inflorescence rather than the roots constitute the strongest sink for leaf glucosinolates compared with plants in vegetative state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis.

Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2)...

متن کامل

Elucidating the role of transport processes in leaf glucosinolate distribution.

In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport proc...

متن کامل

The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis

Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporte...

متن کامل

Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases

Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec...

متن کامل

Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1.

The yeast EGO complex, consisting of Gtr1, Gtr2, Ego1, and Ego3, localizes to the endosomal and vacuolar membranes and plays a pivotal role in cell growth and autophagy regulation through relaying amino acid signals to activate TORC1. Here, we report the crystal structures of a wild-type and a mutant form of Saccharomyces cerevisiae Ego3. Ego3 assumes a homodimeric structure similar to that of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014